
.,.

A Distance Measure for Attention Focusing
and Anomaly Detection in Systems Monitoring

Richard J. I)oylc
Artificial Intelligence Group

Jet Propulsion Laboratory
California institute of Twhnology

Pasadena, CA 91109-8099
rdoyl@aig.jpl.nasa.  gov

Absf ract

Any atlcrnpt to introduce automation into the moni-
toring of’ complex physical systems must start from
a robust anomaly detection capability, This task
is far from straightforward, for a single dctinition
of what constitutes an anomaly is difficult to come
by. In addition, to make the monitoring process
cfticicnt,  and to avoid the potential for information
overload on human operators, attention focusing
must also be addressed. When an anomaly occurs,
more often than not several sensors arc affcctcd, and
the parlially  redundant information they provide can
bc confusing, particularly in a crisis situation where
a response is nccdcd quickly.
Previous results on extending traditional anomaly
detection techniques arc summarizcxt,  The focus of
this paper is a ncw tcchniquc for attention focusing.
The technique involves reasoning about thcdistance
between two frequency distributions, and is used
to detect both anomalous systcm  parameters and
“broken” causal dcpcndcncics.  These two forms of
information togclhcr isolate the locus of anomalous
behavior in the systcrn being monitored,

1 Introduction

Mission Operations personnel at NASA have the task of de-
termining,  from moment to moment, whclhcr a space plat-
form is exhibiting behavior which is in any way anomalous,
which could disrupt the operation of the platform, and in the
worst case, could rcprcscnt a loss of ability to achicvc mission
goals. A traditional tcchniquc  for assisting mission operators
in space platform health analysis is the establishment of alarm
thresholds for sensors, typically indexed by opcraling mode,
which summarize which ranges of sensor values imply the
cxistcncc  of anomalies. Another established tcchniquc  for
anomaly detection is the comparison of predicted values from
a simulation to aclual  values received in tclcmctry.  However,
cxpcricnccd mission operators reason about more than alarm
threshold crossings and discrepancies bctwccn  predicted and
actual to dctcet anomalies: they may ask whether a sensor is
behaving differently than it has in the past, or whclher a cur-
rent behavior may lead t~thcparlicular bane of operators—a
rapidly developing alarm scqucncc.

Our approach to introducing automation into real-time sys-
tems monitoring is based on two observations: 1) mission
operators employ multiple methods for recognizing anoma-
lies, and 2) mission operators do not and should not in-
terpret  all sensor data al I of the time. Wc seek an ap-
proach for determining from moment to moment which of
the available sensor data is most informative about the prcs-
cncc of anomalies wcurring within a systcm. We term
this process sensor selection and wc have implcmcntcd  a
prototype sclcctivc  monitoring systcm called SEI.MON  [6;
71,

The SEI.MON systcrn  has its origins in a sensor planning
systcm called GIUPE [5] which planned information gathering
activities to verify the cxeeution of robot task plans. other
model-based monitoring systems include Dvorak’s MIMIC ,
which performs robust discrepancy detection for continuous
dynamic systems [8; 9], and DcCostc’s DATMI , which infers
systcm states from incomplete sensor data [41. The SIUION
work complements other work within NASA on cmpiricd
and model-based methods for fault diagnosis of acrospacc
platforms [1; 10; 11; 131.

2 Background: The SELMON Approach

How does a human operator or a machine observing a com-
plex physical systcm dccidc when something is going wrong?
Abnormal behavior is always defined as some kind of depar-
ture from normal behavior. Unfortunately, there appears to be
no single, crisp definition of “normal” behavior. In the tradi-
tional monitoring tczhniquc of limit  sensing, normal behavior
is prcdcfincd  by nominal value ranges for sensors. A funda-
mental limitation of this approach is the lack of sensitivity
to context. In the other traditional monitoring tcchniquc of
discrepancy detection, normal behavior is obtained by simu-
lating a model of the system being monitored. This approach,
while avoiding the insensitivity to context of the limit sens-
ing approach, has its own limitations. The approach is only
as good as the systcm model, In addition, normal systcm
behavior typically changes with time, and the model must
continue to evolve, Given these limitations, it can be difficult
to distinguish genuine anomalies from errors in the model.

Noting the limitations of the existing monitoring tcch-
niqucs,  wc have dcvclopcd an approach to monitoring which
is designed to make the anomaly detection process more ro-
bust, to rcxlucc the number of undctcctwl anomalies (false
negatives), Towards this end, wc introduce multiple  anomaly
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models, each employing a different notion of “normal” be-
havior.

2.1 ltmpirical  Anomaly Detection Methods
In this scxlion, wc briefly dcscribc the empirical mcxhods
that wc usc to dc(crminc,  from a local viewpoint, when a
sensor is rcj}orling anomalous behavior. These measures usc
knowledge about each individual sensor, wilhout  knowledge
of any relations among sensors.

Surprise
An appealing way to assess whether current behavior is

anomalous or not is via comparison to ptw,l behavior, This
is the csscncc  of the surprise measure. 11 is designed to
highlights sensor which behaves other than it has historically,
Specifically, surprise uscs the historical frequency distribution
for lhc sensor in two ways: To dctcrminc  the likelihood of
the given current value of the sensor (unusualness), and to
examine (hc relative likelihoods of different values of (hc
sensor (injortt~afivenc,r.f).  It is those sensors which display
unl ikcl y val ucs when other values of lhc sensor arc more
likely which get a high surprise score. Surprise is not high
if the only reason a sensor’s value is unlikely is lhat there arc
many possible values for the sensor, all equally unlikely.

Alarm
Alarm thresholds for sensors, indexed by operating mode,

typically arc cstab]ishcd  through an off-l incanalysis  of syslcm
design. The notion of alarm in SrLMON extends the usual onc
bit of information (the sensor is in alarm or il is not), and also
rcporls how much of the alarm range has been traversed. Thus
a sensor which has gone deep into alarm gets a higher score
than onc which has just  crossed over the alarm threshold.

Alarm Anticipation
The alarm anticipation measure in SILMON performs a

sirnplc form of trend analysis to decide whether or not a sensor
is cxpcctcd to bc in alarm in the future. A straightforward
curve fit is used to project when the sensor will next cross an
alarm threshold, in either dircaion. A high score mans the
sensor wil 1 soon enter alarm or will remain there. A low score
means the sensor will remain in the nominal range or emerge
from alarm soon.

Value Change
A change in the value of a sensor may bc indicative of an

anomaly. In order 10 bctlcr assess such an event, lhc value
cltangc measure in SILMON compares a given value change
10 historical value changes seen on that sensor. The score
rcpormd is based on the proportion of previous value changes
whit}] were ICSS than the given value change. It is maximum
when the given value change is the grcatcs[ value change  seen
to date on that sensor. It is minimum when no value change
has occurred in that sensor.

2.2 Model-I)ased Anomaly Detection Methods
Although many anomalies can be dctcztcd  by applying
anomaly models to the behavior rcporwd  at individual sensors,
robust monitoring also requires reasoning about interactions
occurring in a systcrn  and dctccling  anomalies in behavior
rcporkxl  by several sensors.

Deviation
The dcviafion measure is our cxlcnsion  of the traditional

mclhod of discrepancy dcmction.  As in discrepancy detec-
tion, comparisons arc made bc[wccn prcxticlcd  and acmal sen-
sor values, and diffcrcnccs  arc inlcrprctcd to bc indications of
anomalies. This raw discrepancy is cntcrcd into a normalim-
lion process idcnlical  to that used for the value change score,
and it is this rcprcscntation of relative discrepancy which is
reported. ‘1’hc deviu(ion  score for a sensor is minimum if there
is no discrepancy and maximum if the discrepancy bctwccn
prcdictcd and actual is the grcatcsl seen to date on that sensor,

Dcviafion only rwluircs  that a simulation bc available in any
forin for generating sensor value predictions. However, the
remaining sensi[ivi[y and cascading alarms measures require
the ability to simulate and reason wilh a causal model of the
systcm being monitored.

Sensitivity and Cascading Alarms
Sensitivity measures the potcnlial  for a iargc global per-

turbation 10 develop from current state. Cascading alarms
measures lhc potential for an alarm scqucncc  [o develop from
current state. Both of these anomaly measures usc an cvcnt-
drivcn causal simulator [2; 12] to gcncratc predictions about
future states of lhc system, given current state. Current state
is taken to bc dctincd  by both the current values of systcm
parameters (not all of which maybe sensed) and the pending
events already resident on the simulator agenda. The mea-
sures assign scores to individual sensors according 10 how the
system parameter corresponding to a sensor participates in,
or influcnccs,  the prcdictcd  global behavior. A sensor will
have its highest sensitivity score when behavior originating at
that sensor causes all sensors causally downstream to exhibit
their maximum value change to date. A sensor will have its
highest cascading alarms score when behavior originating at
that sensor causes all sensors causally downstream to go into
an alarm state.

2.3 Previous Results
In order to assess whether SrLMON incrcascd the robustness
of the anomaly detection process, wc pcrformwl  the following
cxpcrirncnt:  We compared !WMON performance to the per-
formance  of the traditional limit sensing tcchniquc  in selecting
critical sensor subsets spccificd by a Space Station Environ-
mental Control and Life Support Syslcm (ECLSS) domain
expert, sensors seen by that expert as useful in understanding
episodes of anomalous behavior in actual historical data from
ECLSS tcstbcd  operations.

The cxpcrimcnt  asked the following specific question: How
often did !WMON  place a “critical” sensor in the top half of
its sensor ordering based on the anomal y detection measures?

The performance of a random sensor sclcc(ion algorithm
would bc cxpcctcd  to bc about 50%; any particular sensor
would appear in the top half of the sensor ordering about half
the time. Limit sensing dctcctcd the anomalies 76.3% of the
time. SEI.MON dctomd the anomalies 95. 19i0  of the time.

These results show SELMON performing considerably bet-
ter than the traditional practice of limit  sensing. They lend
credibility to our premise lhat the most cffcctivc monitoring
systcm is onc which incorporates several models of anoma-
lous behavior. Our aim is to offer a more complctc, robust
set of techniques for anomaly detection to make human opcr-
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atom more cfkctivc,  or to provitfc  the basis for an automated
monitoring capability.

The following is a specific example of the value added
of SEI.MON.  During an episode in which the EC1.SS pre-
heater failed, systcm  pressure (which normally oscillates
within  a known range) bccamc  stable. This “abnormally
normal” behavior is not dctectcd  by traditional monitor-
ing methods bccausc the syslcm  pressure remains firmly
in the nominal range where limit sensing fails to trig-
ger, Furlhcrmorc,  the fluctuating behavior of the sensor
is not modcl~; the predicted value is an averaged stable
value which fails to trigger discrepancy dclection.  Sec [7;
61 for more details ‘on these previous rcstrlts  in cvahrating  the
SEI.MON  approach.

3 Attention Focusing

A robus~ anomaly dclcction  capability provides the core for
monitoring. but only when this capability is combined with
allcntion focusing dots monitoring bczomc both robust and
cfficicnl.  Olhcrwisc, the potential problems of information
overload and too many false positives may defeat the utility
of lhc monitoring systcm.

The atkm~ion  focusing tcchniquc dcvclopcd  here uscs two
sources of information: historical data describing nominal
sys(cm behavior, and causal information describing which
pairs of sensors arc constrained to bc correlated, duc to the
prcscncc of a dcpcndcncy. The intuition k that the origin and
extent of an anomaly can bc determined if the misbehaving
systcm  parameters and the misbehaving causal dcpcndcncics
can bc dctcrmincd.  Such information also supports reasoning
to distinguish whether sensors, syslcm parameters or nlcch -
anisms  arc misbehaving duc to the fact that the signature of
“broken” nodes and arcs in the causal graph arc distinguish-
able. Scc Figure 1.

For example, the expected signature of an anomalous sen-
sor includes the node of the sensor itself and the immediately
adjacent arcs corresponding to the causal  dcpendcncics  that
the sensor participates in directly. The intuition is that the ac-
tual systcm is behaving normally so the locus of “brokenness”
is isolated to the sensor and the set of adjacent causal dcpcn-
dcncics  which attempt to rczoncilc the bogus value reported
by the sensor,

The cxpcclcd signalurc  of an anomalous systcm  paramclcr
also includes nodes and arcs which arc downstream in the
causal graph from the node corrcsportding  to the sys[cm pa-
rameter.  The intuition here is that the misbehavior, being in
the actual syslcm,  will propagate.

The expected signature of an anomalous mechanism also
includes arcs and nodes causally downstream from lhc arc
corrcsporrding  to the mechanism. Once again, the intuition is
that the misbehavior is in the syslcm  itself, and it will prop-
agate. The way to distinguish this case from the anomalous
systcm paramclcr case is to examine all input arcs (assuming
there arc more than one) to the most causally prior node in the
“broken” subgraph.

3.1 Two Additional Measures
While SM.MON runs, it computes incremental frequency dis-
tributions for all sensors being monitored These frequency
distributions can bc saved as a method for capturing behav-
ior from any episode of intcrcsl.  Of particular interest arc

Signature of Anomalous System Parameter

Signature of Anomalous Sensor

Signeture of Anomalous Mechanism

Figure 1: Anomalous Systcm Paramclcrs,  Sensors and Mech-
anisms.

historical distributions which correspond to nominal systcm
behavior.

To idcnlify  an anomalous sensor, wc apply a distance mea-
sure, dcfkd  below, to the frqucncy distribution which rcp-
rcscnts rcccnt behavior to the historical frequency distribution
rcprcscnting  nominal behavior. Wc call the measure simply
dis(ance.  To identify a “broken” causal dependency, wc first
apply the srtmc distance measure 10 the historical frequency
distributions for the cause sensor and the effect sensor. This
rcfcrcncc  distance is a weak rcprcscntation  of the correlation
that exists bcxwccn  the values of the two sensors duc to the
causal dependency. This rcfcrcncc distance is then compared
to the distance betwczn  the frequency distributions based on
rcccnt data of the same cause sensor and effect sensor, The dif-
fcrcncc between the rcfcrcncc distance and the rcccnt distance
is the measure of the “brokenness” of the causal dependency.
Wc call this measure causal diwmce.

3.2 Desired Properties of the Distance Measure

Define a distribution 1? as the vector di such that

Vi, O<di<l

For a sensor S, wc assume that the range of values for the
sensor has been par[itioncd  into n contiguous subrangcs  which
cxbaus!  this range. Wc consuuct a frequency distribution as a
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vector  l~s of Icnglh  n, where lhc vahtc of di is Lhc frequency
wilh which S has displayed a value in the M subrangc.

If our aim was only to compare different fr~ucncy  distri-
butions  of (}IC same sensor, wc could usc a distance rncasurc
which required the number of partitions, Or bins in the two
distributions to bc equal, and the range of values covcrcd by
the distributions to bc the same. However, since our aim is
to bc able to compare the frequency distributions of different
sensors, these conditions must be relaxed.

Before defining the other desired properties of the distance
measure, wc define two special t ypcs of frequency distri  -
btnion, Let Y bc the random, or flat distribution where
Vi, di = ~. L.d Si IM the Set of “spike” distribrrlions  where
di=land  Vj$i,  dj=O.

Wc seek a distance measure for frequency distributions with
the following properties:

Dislance
V131)2, A(DI , D2) >0
This properly merely dctincs  the measure as a distance

measure.

lden~ity
VD,A(D, D) = O

Symfnelry
VIll D2, A(D1 , I]z) == A(D2, Dl )
Wc do not wish to emphasize whether wc arc comparing

rcccnt  data to historical data or vice versa, or cause data to
cffca data or vice versa.

Spike Distinctness
Vi+ j, A(Si, Sj) >0
WC wish the set of Si to be distinguishable,

Spike Ordering
Vi, A(Si, Si+l) < A(Si, Si+z)
The distance measure should prcscrvc  the fact that there is

an ordering on the bins.

Spike Equidistance
Vi # j, A(Si,  Si+l) = A(sj, Sj+.])
There should be no diffcrcncc in weighting of the spike

distributions.

SpikctlVat  Equidislancc
Vi # j, A(si, ~) = A(Sj, F)
The diffcrcncc between any spike distribution and the flat

distribution is to bc the same.

Ex[rcma  VD1 D2Vi, A(D1 , l~z) ~ A(si, F)
Any spike distribution and the flat distribution arc to bc

considered the most different. All other distributions fall in
bctwccn.

3.3 The Distance Measure
The distance measure is computed by projecting the two dis-
tributions into the two-dimensional space [j,s] in polar coor-
dinates  and taking the cuclidian  distance between the projec-
tions.

Define the “flatness” component j(l))  of a di.wribution  as
follows:

Y&l1

m

F’

1=1

)
1=1 so

Figure 2: The function A(D], 1)2).

This is simply the sum of the bin-by-bin diffcrcnccs bc-
twccn the given distribution and F. Note that O ~ f(D)  ~ 1.
Also,  j(si) + 1 aS n + ~.

Dctinc the “spikcncss”  component s(D) of a distribution
as:

n–1 .

~~~di
i =0

This is simply the centroid  value calculation for the distri-
bution. ‘fhc weighting factor@ will be explained in a moment.
Onccagain, O s s(D) ~ 1.

Now take [J,s] to bc polar coordinates [r, t?]. This maps
F to the origin and the S i to points along an arc on the unit
circle. SW Figure 2.

By inspection, the Spike Distinctness, Spike Ordering and
SpikelFlat  Equidistance properties are satisfied, The Spike
Equidistance properly is satistkxl  bccausc there is no un-
cxjual  weighting applied in the ccntroid calculation. The Dis-
fance, fdenfify  and Synvnctry  properties follow from taking
the cuclidian distance bctwc.cn  the projections of the distri-
butions. The Zxo-ema properly is satisfied by taking d = $.
This choice of # guarantees that A(SO, Sn_I ) = A(F’, SO) =
A(F, S,, _ I ) = 1 and all other distances in the region which is
the range of A arc by inspection < 1.

lnscnsilivity  to the number of bins in the two distributions
and the range of values cncodcd in the distributions is provided
by the [j,s] projection function, which abstracts away from
these properties of the distributions.

Wc may note in passing that the distance measure dcscribcd
here may be easily modified to apply to continuous distribu-
tions, when theoretical models of tbc behavior of a systcrn
arc available, The ccntroid calculation of thes component is
easily accomplished, and the J component involves merely
the inlcgral  of a diffcrcncc,  which may be accomplished nu-
merically if necessary.
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3.4 Results

In this scclion,  wc report on the results of applying the dis-
tribution distance measure to the task of f~using attention
in monitoring, The distribution distance measure is used to
idcnti  fy misbehaving nodes (distance) and arcs (causal dis-
kvtce) in the causal graph of the systcm being monitored, or
equivalcntl  y, detect and isolate the extent of anomalies in the
systcm being monitored.

3,4.1 A Space Shuttle Propulsion Subsystem
Figure. 3 and Figure 4, show rcspcaivcly,  a schematic dia-

gram and a causal graph for a portion of the Forward Reactive
Control Systcm (FRCS) of the Space, Shuttle. A full causal
graph for the Rcactivc Control Systcm,  comprising the For-
ward, 1 zft and Right RCS, was developed with the domain
cxpcrl.

3.4.2 Attention Focusing Examples
SM.MON was run on seven episodes describing nominal

behavior of the FRCS. The frcqtrcncy  disLribtrtions  collcctcd
during these runs were merged. Rcfcrcncc  distances were
computed for sensors participating in causal dcpcndcncics,

SII.MON was then run on 13 different fault  episodes, rcp-
rcscnting faults such as leaks, sensor failures and regulator
failures. ‘Iho of these episodes will  bc examined here; re-
sults were similar for all episodes. In each fault episode,
and for each sensor, the distribution distance measure was

Ha VLCi I He VRCi

He VLOp

Manf 1 P

Pr Tank T Manf 2 P

Manf 3 P

Manf4 P

Pr Tank 0

Figure 4: Causal Graph for the FRCS.

applied to the incremental freqtrcncy distribution collected
during the episode and the historical frequency distribution
from the mcrgcxl nominal episodes. These distances were a
measure of the “brokenness” of nodes in the causal graph; i.e.,
instantiations of the dismnce  measure.

Ncw distances were compulcd between the distributions
corresponding to sensors participating in causal dcpcndcncics.
The differences bctwczn the ncw distances and the rcfcrcncc
distances for lhc dcpcnctcncics  were a measure of the “bro-
kenness” of arcs in the causal graph; i.e., instantiation of the
causal distance measure.

The first episode involves a leak affecting the first and
second manifolds (jets) on the oxidizer side of the FRCS,
The pressures at these two manifolds drop to vapor pressure.
The dcpcndcncy between these pressures and the pressure in
the propellant tank is scvcrcd bcc.ausc lhc valve bctwccn the
propellant tank and the manifolds is closed. Thus there arc
two anomalous systcm  parameters (the manifold pressures)
and two anomalous mechanisms (the agrccmcnt  between the
propellant and manifold pressures when the valve is open).

The disfance  and causal dis[ance  measures compuled for
nodes and arcs in the FRCS causal graph rcftcct  this faulty
behavior. SW Figure 5. (To visualize how the distribution
distance measure circumscribes the extent of anomalies, the
coloring of nodes and the width of arcs in the figure are
correlated with the magnitudes of the associatwl  disfance and
causal distance scores).

The second episode involves an ovcrprcssurizttion  of the
propellant tank duc to a regulator failure. Onboard software
automalicall  y attempts to C1OSC the valves which isolate the
helium tank from the propellant tank, Onc of the valves sticks
and remains open,

The distance  and causal dislance  measures isolate both
the misbehaving systcm parameters (propellant pressure and
valve status indicators) and the misbehaving mechanisms (bc-
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twccn the helium and propellant tank pressure and bclwccn
the propellant tank pressure and the valve status  indicators).
0vcrprcssuri7,ation  of the propellant tank also alters the usual
relation bctwwn propellant tank pressure and manifold pres-
sures.  SW Figure 6.

4 Discussion

The distance and causal dis[ance  measures bawd on the dis-
tribution distance measure combine two concepts: 1) cn~pir-
ical data alone can bc an cffcctivc  model of behavior, and 2)
the cxislcncc  of a causal dcpcndcncy  bctwmr two parame-
ters  implies that their values arc somehow correlated. The
causal distance measure COINLWCtS  a model of the correla-
tion bctwccn  two causal] y rclaoxl parameters, capturing the
general notion of constraint in an admittedly absuact manner.
Noncthclcss,  these models of constraint arising from causal-
ity provide surprising discriminatory power for dc[crmining
which causal dcpcndcncics (and corresponding systcm nKzh-
anisms)  arc misbehaving. (In the disfunce  measure for detect-
ing rnisbchaving  syslcm  parameters, wc arc simply using [hc
clcgcncratc constraint of cxpcckxl equality bctwccn historical
and rcccnt behavior.)

4.1 Monitoring Architecture

‘l%c  attention focusing capability provided by thcdislance  and
causal  dislance  measures can bc combined with ihc mulliplc-
vicwpoint anomaly detection capability already dcvclopcd  in
StU.MON  to construct a general monitoring architccturc,

The multiplcanomaly  measures (including the disfance  and
causal distance measures, which arc anomaly dclcction nwr-
surcs in their own right) provide continuous anomaly dctcclion
capability. All of these measures arc normalized to the range
(0, 1] so lhcir  sensitivity, individually or collcctivcly,  can bc
fine-tuned for the behavior of particular monitored systems.
Whcncvcr a dctcctcd anomaly is announced, the extent of the
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Figure 6: A pressure regulator fault,

anomaly is isolated by applying the results of the dislance and
causal  disfance  measures to the causal graph of the syslcm.
If SIWMON is supporting a human operator, the operator’s at-
tention  is focused on the locus of the anomaly, rather than the
potentially long and confusing list of the individual manifes-
tations of the anomaly.

Once an anomaly is dctcctcd and circumscribed, the opera-
tor can once again usc the set of anomal y dctcclion  measures to
galhcr supplementary, multiple-viewpoint information about
the dctcclcd  anomaly at multiple probe points.

4.2 Anomaly Characterization
Mosl  model-based reasoning work has focused on diagnosis,
treating monitoring as a “front-end”, with discrepancy detec-
tion usually chosen as the monitoring tcchniquc. The StHMON
work suggests modifications to this view.

Monitoring is a complex, subtle and important task in its
own right. The most sophisticated diagnosis engine is of
Iimimd  utility if it is unreliably invoked by a weak anomaly
detection module.

The monitoring/diagnosis distinction actually defines two
poles of a continuum [3]. At onc cnd is anomaly detec-
tion. The goal of anomaly detection is simply to dctcrminc
if an anomaly exists. General models of what constitutes an
anomaly arc utilimt,  with Iimitcd rcfcrcncc  to explicit behav-
ior models, Reasoning is local rather than global.

Ncxl  in the continuum is anomaly charactcri7ation.  The
goal here is to dcscribc  the extent of anomalous behavior.
Again, the usc of explicit behavior models is limitcxi,  but
reasoning now encompasses a global view of the systcm.
The empirical anomaly detection and attention focusing ca-
pabilities  of !WLMON cmrrcspond  to anomaly detection and
anomaly characterization as dctincx! here. The model-based
anomaly detection capabilities of SELMON  also arc examples
of anomal y characlcri7ation.

Next comes fault isolation. Reasoning now is rctincd from
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● anomaly extent to anomaly source. Explici(  bc~or  models
may bc used, but not explicit fault models.

Finally comes full-fledged fault diagnosis, which includes
an cxplanat ion of how the proposed fault produced lhc anoma-
lous behavior. 13xplicil  fault  models may bc rcfcrcncd  10
vcri fy h ypo[hcscs.

In aclual  real-time monitoring practice, opcralors  perform
anomaly dckxtion  and charac[crinlion  routinely, and faull
isolation when enough information is available 10 supporl
their reasoning. Fault diagnosis is typically done off-line.

s ~~,{,,~~ work

Several issues need to be examined to continue the cvahration
of lhc altcntion  focusing lcchniquc  based on lhc distribution
dis[ancc measure and its ulility  in monitoring.

Wc need to understand lhc sensitivity of the trxhniqtrc  to
how sensor value ranges arc partitioned. Clearly the discrim-
inatory power of the distribution distance measure is rclalcd

to the resolution provided by the number of bins and the bin
boundaries. ‘1’hc  results reported here arc encouraging for lhc
number of FRCS sensor bins were in many cases as low as
three and in no cases more than ci@]t.

Wc also need to understand the suitability of the tcchniquc
for syslcms  which have many modes or configurations. Wc
would expect t}lat the discriminatory power of the tcchniquc
would bc compromised if the distributions describing behav-
iors from different modes were merged. Thus the tcchniquc
requires lhal historical data rcprcscnling  nominal behavior is
separable for each mode. If Lhcrc arc many modes, at the
very lcas[ there is a data managcrncnt  task, A capability for
tracking mode transitions is also rcqrrircd. An unsupervised
kxwnirrg  systcm  which can enumerate sys(cm modes from his-
torical data and enable automated classification would SOIVC
this problcm  niccl y.

The d iscri minatory power of the causal dis(ance  measure

might bc cnhanccd by retaining the flatness/spikcncss distinc-
tion. For many linear functions, different input distributions
may map to value-shifted but similarly shaped output distri-
butions. In other words, the spikcncss  component may vary
while (1IC flalncss  component may bc relatively invariant, It
may bc possible to distinguish the case where misbehavior
is the result of bogus values being propagated through slill
correctly functioning mechanisms.

It should bc possible to dcscribc the temporal (along with
the causaI/spatiaI)  extent of anomalies by incrcmcn~lly  com-
paring rcccnt sensor frequency distributions calctrlamd from
a “moving window” of constant Icngth  with static rcfcrcncc
frequency distributions.

6 Towards Applications

I’hc approach dcscribcd  in this paper has usability advantages
over other forms of model-based reasoning. The overhead in-
volved in constructing the causal and behavioral model of the
systcm is minimal. The behavioral model is derived directly
from actual data; no offline modeling is required. The causal
model is of lhc simplest form, describing only the cxistcncc
of dcpcndcncies. For the Shuttle RCS, a 198-node, 196-arc
causal graph was constructed in a single onc and onc half hour
session bctwccn the author and lhc domain expert.

SE1.MON  is being applied at the NASA Johnson Space Cen-
ter as a monitoring tool for Space Shutllc  Operations and
Space Station Operations. Current application efforts include
the onc for the F’repulsion (PROP) flight control discipline
reported on here, and onc for the Thermal (EECOM) flight
control discipline. IXCOM wishes in particular to bc able
to know and reason about  how actual  orbiter thermal per-
formance differs from predictions gcncratcd by an available
mathematical model of orbiter thermal pcrformancc, An op-
erational  SELMON  prototype, available starting with the rc-
ccnt Hubblc Repair mission is available for evaluation by all
flight control disciplines, only r~uiring that a list of sensors
“owned” by that discipline bc provided.

At the Jet Propulsion Laboratory, wc arc looking at the
problcm  of onboard downlink determination for the Pluto Fast
Flyby project, now in its early planning phase. The spacecraft
will have Iimikd communica[ionsbandwidth  and it will not bc
possible to transmit all onboard-collcctcd  sensor data. Only
eight hours of covcragc from the Deep Space Network will bc
available pcr week, The challcngc  is to devise a method for
constructing a suitable summary of a week’s worth of sensor
data guaranteed to report on any anomalies which occurred.
The anomaly detection and attention focusing capabilities of
SILMON maybe well-matched to this  task.

7 Summary

Wc have dcscribcd  the properties and performance of a dis-
tance measure used to identify rnisbchavior  at sensor loca-
tions and across mechanisms in a systcm  being monitored.
The tcchniquc  enables the locus of an anomaly to bc dctcr-
mined. This attention focusing capability is combined with a
previously rcporlcd anomaly detection capability in a robust,
cfticicnt  and informative monitoring systcm  called SELMON.
SM.MON is being applied in mission operations at NASA,
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